Saturday, 11 November 2017

Bruk The Tre Måneders Moving Average Metoden Til Prognose Salg For Juni


Flytte gjennomsnittlig prognose Innledning. Som du kanskje tror vi ser på noen av de mest primitive tilnærmingene til prognoser. Men forhåpentligvis er disse minst en verdig innføring i noen av databehandlingsproblemene knyttet til implementering av prognoser i regneark. I denne veinen vil vi fortsette med å starte i begynnelsen og begynne å jobbe med Moving Average prognoser. Flytte gjennomsnittlige prognoser. Alle er kjent med å flytte gjennomsnittlige prognoser, uansett om de tror de er. Alle studenter gjør dem hele tiden. Tenk på testresultatene dine i et kurs der du skal ha fire tester i løpet av semesteret. La oss anta at du fikk en 85 på din første test. Hva vil du forutsi for din andre testscore Hva tror du at læreren din ville forutsi for din neste testscore Hva tror du dine venner kan forutsi for din neste testscore Hva tror du at foreldrene dine kan forutsi for neste testresultat uansett om alt det du kan gjøre med dine venner og foreldre, de og din lærer er veldig sannsynlig å forvente deg å få noe i området av 85 du nettopp har fått. Vel, nå kan vi anta at til tross for selvforfremmelse til vennene dine, overestimerer du deg selv og figurerer du kan studere mindre for den andre testen, og så får du en 73. Nå er det alle de bekymrede og ubekymrede går til Forvent deg at du kommer på den tredje testen. Det er to svært sannsynlige tilnærminger for dem å utvikle et estimat, uansett om de vil dele det med deg. De kan si til seg selv, at denne fyren alltid blåser røyk om hans smarts. Hes kommer til å få en annen 73 hvis han er heldig. Kanskje foreldrene vil prøve å være mer støttende og si, quote, så langt har du fått en 85 og en 73, så kanskje du burde finne på å få en (85 73) 2 79. Jeg vet ikke, kanskje hvis du gjorde mindre fest og werent vevet vasselen over alt, og hvis du begynte å gjøre mye mer å studere, kan du få en høyere score. quot Begge disse estimatene flytter faktisk gjennomsnittlige prognoser. Den første bruker bare din siste poengsum for å prognose din fremtidige ytelse. Dette kalles en flytende gjennomsnittlig prognose ved hjelp av en periode med data. Den andre er også en flytende gjennomsnittlig prognose, men bruker to perioder med data. La oss anta at alle disse menneskene bråser på ditt store sinn, har slags pisset deg av og du bestemmer deg for å gjøre det bra på den tredje testen av dine egne grunner og for å sette en høyere poengsum foran din quotalliesquot. Du tar testen og poengsummen din er faktisk en 89 Alle, inkludert deg selv, er imponert. Så nå har du den endelige testen av semesteret som kommer opp, og som vanlig føler du behovet for å få alle til å gjøre sine spådommer om hvordan du skal gjøre på den siste testen. Vel, forhåpentligvis ser du mønsteret. Nå, forhåpentligvis kan du se mønsteret. Hvilke tror du er den mest nøyaktige fløyten mens vi jobber. Nå går vi tilbake til vårt nye rengjøringsfirma som startes av din fremmedgjorte halv søster, kalt Whistle While We Work. Du har noen tidligere salgsdata som er representert av følgende del fra et regneark. Vi presenterer først dataene for en tre-års glidende gjennomsnittlig prognose. Oppføringen for celle C6 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C7 til C11. Legg merke til hvordan gjennomsnittet beveger seg over de nyeste historiske dataene, men bruker nøyaktig de tre siste perioder som er tilgjengelige for hver prediksjon. Du bør også legge merke til at vi ikke virkelig trenger å gjøre spådommene for de siste perioder for å utvikle vår siste prediksjon. Dette er definitivt forskjellig fra eksponentiell utjevningsmodell. Ive inkluderte quotpast predictionsquot fordi vi vil bruke dem på neste nettside for å måle prediksjonsgyldigheten. Nå vil jeg presentere de analoge resultatene for en to-års glidende gjennomsnittlig prognose. Oppføringen for celle C5 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C6 til C11. Legg merke til hvordan nå bare de to siste stykkene av historiske data blir brukt for hver prediksjon. Igjen har jeg tatt med quotpast predictionsquot for illustrative formål og for senere bruk i prognose validering. Noen andre ting som er viktig å legge merke til. For en m-periode som beveger gjennomsnittlig prognose, brukes bare de nyeste dataverdiene for å gjøre prognosen. Ingenting annet er nødvendig. For en m-periode som beveger gjennomsnittlig prognose, legger du merke til at den første prediksjonen forekommer i periode m 1. Begge disse problemene vil være svært viktige når vi utvikler koden vår. Utvikle den bevegelige gjennomsnittsfunksjonen. Nå må vi utvikle koden for den bevegelige gjennomsnittlige prognosen som kan brukes mer fleksibelt. Koden følger. Legg merke til at inngangene er for antall perioder du vil bruke i prognosen og rekke historiske verdier. Du kan lagre den i hvilken arbeidsbok du vil ha. Funksjon MovingAverage (Historical, NumberOfPeriods) Som Single Deklarering og Initialisering av variabler Dim Item Som Variant Dim Counter Som Integer Dim Akkumulering Som Single Dim HistoricalSize Som Integer Initialiserende variabler Teller 1 Akkumulering 0 Bestemme størrelsen på Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulere riktig antall siste tidligere observerte verdier Akkumulasjonsakkumulering Historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage AkkumuleringsnummerOfPeriods Koden vil bli forklart i klassen. Du vil plassere funksjonen på regnearket slik at resultatet av beregningen vises der det vil like følgende. Den enkleste tilnærmingen vil være å ta gjennomsnittet fra januar til mars og bruke det til å estimere April8217s salg: (129 134 122) 3 128 333 På grunnlag av salget fra januar til mars forutsetter du at salget i april vil være 128 333. Når April8217s faktiske salg kommer inn, vil du da beregne prognosen for mai, denne gangen bruker februar til april. Du må være i samsvar med antall perioder du bruker til å flytte gjennomsnittlig prognose. Antall perioder du bruker i dine gjennomsnittlige prognoser er vilkårlige. Du kan bare bruke to perioder, eller fem eller seks perioder uansett hva du ønsker å generere prognosene dine. Tilnærmingen ovenfor er et enkelt bevegelige gjennomsnitt. Noen ganger kan nyere salg i måneder8217 være sterkere påvirkning av det kommende month8217s salg, så du vil gi de nærmere månedene mer vekt i prognosemodellen din. Dette er et vektet glidende gjennomsnitt. Og akkurat som antall perioder, er vektene du tildeler, rent vilkårlig. Let8217s sier at du ønsket å gi March8217s salg 50 vekt, februar8217s 30 vekt og januar8217s 20. Deretter vil prognosen for april være 127,000 (122,50) (134,30) (129,20) 127. Begrensninger av bevegelige gjennomsnittsmetoder Flytende gjennomsnitt regnes som en 8220smoothing8221 prognose teknikk. Fordi du8217 tar et gjennomsnitt over tid, myker du (eller utjevner) virkningen av uregelmessige hendelser i dataene. Som et resultat kan effektene av sesongmessighet, konjunktursykluser og andre tilfeldige hendelser dramatisk øke prognosen feil. Ta en titt på en full år8217s verdi av data, og sammenlign et 3-års glidende gjennomsnitt og et 5-års glidende gjennomsnitt: Legg merke til at i dette tilfellet at jeg ikke lagde prognoser, men heller sentrert de bevegelige gjennomsnittene. Det første tre måneders glidende gjennomsnittet er for februar, og det er gjennomsnittlig januar, februar og mars. Jeg gjorde også lignende for 5-måneders gjennomsnittet. Nå ser du på følgende diagram: Hva ser du Er ikke tremåneders glidende gjennomsnittsserien mye jevnere enn den faktiske salgsserien Og hva med femmåneders glidende gjennomsnitt It8217s jevnere. Derfor, jo flere perioder du bruker i glidende gjennomsnitt, jo jevnere din tidsserie. Derfor, for prognoser, kan et enkelt glidende gjennomsnitt ikke være den mest nøyaktige metoden. Flytte gjennomsnittlige metoder viser seg å være ganske verdifulle når man prøver å trekke ut sesongmessige, uregelmessige og sykliske komponenter i en tidsserie for mer avanserte prognosemetoder, som regresjon og ARIMA, og bruken av bevegelige gjennomsnittsverdier ved dekomponering av en tidsserie vil bli adressert senere i serien. Bestemme nøyaktigheten til en flytende gjennomsnittsmodell Vanligvis vil du ha en prognosemetode som har minst feil mellom faktiske og forventede resultater. En av de vanligste målene for prognose nøyaktighet er gjennomsnittlig absolutt avvik (MAD). I denne tilnærmingen tar du den absolutte verdien av forskjellen mellom period8217s faktiske og forventede verdier (avviket) for hver periode i tidsseriene som du genererte en prognose for. Så gjennomsnittlig de absolutt avvik, og du får et mål på MAD. MAD kan være nyttig når du bestemmer deg for antall perioder du gjennomsnittlig, og eller hvor mye vekt du legger på hver periode. Vanligvis velger du den som resulterer i laveste MAD. Here8217 er et eksempel på hvordan MAD beregnes: MAD er bare gjennomsnittet på 8, 1 og 3. Flytte gjennomsnitt: Recap Når du bruker bevegelige gjennomsnitt for prognoser, husk: Flytte gjennomsnitt kan være enkelt eller vektet Antall perioder du bruker til din gjennomsnittlig og eventuelle vekter du tildeler hver, er strengt vilkårlig. Flytende gjennomsnitt utjevner uregelmessige mønstre i tidsseriedata, jo større antall perioder som brukes for hvert datapunkt, desto større utjevningseffekt. På grunn av utjevning, prognose neste måned8217s salg basert på siste månedene8217s salg kan resultere i store avvik på grunn av sesongmessige, sykliske og uregelmessige mønstre i dataene og Utjevningskapasiteten til en bevegelig gjennomsnittlig metode kan være nyttig ved å dekomponere en tidsserie for mer avanserte prognosemetoder. Neste uke: Eksponensiell utjevning I neste uke8217s Forecast Forecast Friday. Vi vil diskutere eksponensielle utjevningsmetoder, og du vil se at de kan være langt bedre enn å flytte gjennomsnittlige prognosemetoder. Fortsatt don8217t vet hvorfor våre prognose fredag ​​innlegg ser ut på torsdag Finn ut på: tinyurl26cm6ma Liker dette: Postnavigasjon Legg igjen et svar Avbryt svar Jeg hadde 2 spørsmål: 1) Kan du bruke den sentrert MA-tilnærmingen til å prognose eller bare for å fjerne sesongmessighet 2) Når du bruker den enkle t (t-1t-2t-k) k MA for å prognose en periode fremover, er det mulig å prognose mer enn 1 periode framover. Jeg antar da at prognosen din ville være en av poengene som fôr til neste. Takk. Elske infoen og dine forklaringer I8217m er glad for at bloggen I8217m er sikker på at flere analytikere har brukt den sentrale MA-tilnærmingen til prognoser, men jeg ville ikke, siden denne tilnærmingen gir et tap av observasjoner i begge ender. Dette knytter seg da til ditt andre spørsmål. Vanligvis er simpel MA brukt til å prognose bare en periode framover, men mange analytikere 8211 og jeg for noen ganger 8211 vil bruke min foreløpige prognose for en periode som en av inngangene til andre periode fremover. Det er viktig å huske at jo lenger inn i fremtiden du forsøker å prognose, desto større er risikoen for prognosefeil. Dette er grunnen til at jeg ikke anbefaler sentrert MA for prognose 8211. Tapet av observasjoner på slutten betyr at du må stole på prognoser for de tapte observasjonene, så vel som perioden (er) foran, så det er større sjanse for prognosefeil. Lesere: You8217 er invitert til å veie inn på dette. Har du noen tanker eller forslag på denne Brian, takk for din kommentar og dine komplimenter på bloggen. Fint initiativ og fin forklaring. It8217 er veldig hjelpsomme. Jeg prognose egendefinerte kretskort for en kunde som ikke gir noen prognoser. Jeg har brukt glidende gjennomsnitt, men det er ikke så nøyaktig som industrien kan gå opp og ned. Vi ser mot midten av sommeren til slutten av året at frakt pcb8217 er oppe. Da ser vi i begynnelsen av året bremser nedover. Hvordan kan jeg være mer nøyaktig med mine data Katrina, fra det du fortalte meg, ser det ut til at ditt trykte kretskortsalg har en sesongbestemt komponent. Jeg tar opp sesongmessighet i noen av de andre prognosen fredag ​​innleggene. En annen tilnærming du kan bruke, som er ganske enkelt, er Holt-Winters algoritmen, som tar hensyn til sesongmessighet. Du kan finne en god forklaring på det her. Pass på å avgjøre om årstidens mønster er multiplikativ eller additiv, fordi algoritmen er litt forskjellig for hver. Hvis du plotter dine månedlige data fra noen år og ser at sesongvariasjoner på samme tidspunkter ser ut til å være konstant år over år, så er sesongmessigheten additiv hvis sesongvariasjonene over tid ser ut til å øke, så sesongmessigheten er multiplikativ. De fleste sesongbestemte tidsserier vil være multiplikative. Hvis du er i tvil, antar du multiplikativ. Lykke til Hei, Mellom den metoden:. Nave Forecasting. Oppdaterer gjennomsnittet. Flytte gjennomsnittet av lengden k. Enten vektet Flytende Gjennomsnittlig lengde k ELLER Eksponentiell utjevning Hvilken av disse oppdateringsmodellene anbefaler du at jeg bruker for å prognose dataene. Etter min mening tenker jeg på Moving Average. Men jeg vet ikke hvordan du gjør det klart og strukturert. Det avhenger egentlig av mengden og kvaliteten på dataene du har, og din prognosehorisont (langsiktig, midtveis eller kortsiktig). Kapittel Four (MC og TF) Hva to tall er inkludert i den daglige rapporten til administrerende direktør i walt Disney Parks amp resorts om de seks Orlando parker a. Yesterdays prognostisert oppmøte og jøders faktiske oppmøte b. Dagens virkelige tilstedeværelse og dagens forventede tilstedeværelse c. Foreløpig prognostisert fremmøte og dagens forventede tilstedeværelse d. yesterdays faktiske oppmøte og siste år oppmøte e. Foreløpig forventet værvarsel for gårdager og årlig gjennomsnittlig daglig prognosefeil En seks måneders glidende gjennomsnittlig prognose er bedre enn en tre måneders glidende gjennomsnittlig prognose dersom etterspørsel a. er ganske stabil b. har endret seg på grunn av nylige kampanjer c. følger en nedadgående trend d. følger et sesongmessig mønster som gjentar seg to ganger i året e. følger en oppadgående trend For et gitt produktbehov er tidsserie-trendligningen 53 - 4 X. Det negative tegnet på ligningens helling a. er en matematisk umulighet b. er en indikasjon på at prognosen er partisk, med prognosverdier lavere enn de faktiske verdiene c. er en indikasjon på at etterspørselen etter produktene faller d. innebærer at bestemmelseskoeffisienten også vil være negativ e. betyr at RSFE vil være negativt Hvilke av følgende er sanne angående de to utjevningskonstantene i prognosen inkludert trend (FIT) - modellen a. En konstant er positiv, mens den andre er negativ. b. De kalles MAD og RSFE. c. Alpha er alltid mindre enn beta. d. En konstant jevner regresjonsavskjæringen, mens den andre jevner regresjonshellingen. e. Deres verdier er bestemt uavhengig. Etterspørselen etter et bestemt produkt forventes å være 800 enheter per måned, i gjennomsnitt over alle 12 måneder av året. Produktet følger et sesongmessig mønster, for hvilken månedsindeksen i januar er 1,25. Hva er sesongjustert salgsprognose for januar a. 640 enheter b. 798,75 enheter c. 800 enheter d. 1000 enheter e. kan ikke beregnes med den oppgitte informasjonen. En sesongindeks for en månedsserie skal snart beregnes på grunnlag av tre års akkumulering av data. De tre forrige juli-verdiene var 110, 150 og 130. Gjennomsnittet over alle månedene er 190. Den omtrentlige sesongindeksen for juli er a. 0,487 b. 0.684 c. 1.462 d. 2.053 e. kan ikke beregnes med informasjonen gittA Forecast Forecast Calculation Examples A.1 Prognose Beregningsmetoder Tolv metoder for beregning av prognoser er tilgjengelige. De fleste av disse metodene sørger for begrenset brukerkontroll. For eksempel kan vekten plassert på nyere historiske data eller datoperioden for historiske data som brukes i beregningene, spesifiseres. Følgende eksempler viser beregningsmetoden for hver av de tilgjengelige prognosemetoder, gitt et identisk sett med historiske data. Følgende eksempler bruker de samme salgsdataene fra 2004 og 2005 for å produsere en salgsprognose fra 2006. I tillegg til prognoseberegningen inneholder hvert eksempel en simulert 2005-prognose for en tre måneders holdoutperiode (behandlingsalternativ 19 3) som deretter brukes til prosent av nøyaktighet og gjennomsnittlige absoluttavviksberegninger (faktisk salg sammenlignet med simulert prognose). A.2-prognoser for prestasjonsvurderingskriterier Avhengig av valg av behandlingsalternativer og trender og mønstre som finnes i salgsdata, vil enkelte prognosemetoder utføre bedre enn andre for et gitt historisk datasett. En prognosemetode som passer for ett produkt, kan ikke være aktuelt for et annet produkt. Det er heller ikke sannsynlig at en prognosemetode som gir gode resultater på et stadie av produktets livssyklus, forblir passende gjennom hele livssyklusen. Du kan velge mellom to metoder for å evaluere den nåværende ytelsen til prognosemetodene. Disse er gjennomsnittlig absolutt avvik (MAD) og prosentandel av nøyaktighet (POA). Begge disse resultatevalueringsmetodene krever historiske salgsdata for en spesifisert tidsperiode. Denne tidsperioden kalles en holdoutperiode eller perioder som passer best (PBF). Dataene i denne perioden brukes som grunnlag for å anbefale hvilke av prognosemetoder som skal brukes til å lage neste prognoseprojeksjon. Denne anbefalingen er spesifikk for hvert produkt, og kan endres fra en prognose generasjon til den neste. De to prognosevalueringsmetodene er demonstrert i sidene som følger eksemplene på de tolv prognosemetodene. A.3 Metode 1 - Spesifisert prosent over siste år Denne metoden multipliserer salgsdata fra forrige år med en brukerdefinert faktor for eksempel 1,10 for en 10 økning, eller 0,97 for en 3 reduksjon. Nødvendig salgshistorie: Ett år for beregning av prognosen pluss brukerens spesifiserte antall tidsperioder for vurdering av prognoseytelse (behandlingsalternativ 19). A.4.1 Varselberegning Område for salgshistorie som skal benyttes ved beregning av vekstfaktor (behandlingsalternativ 2a) 3 i dette eksemplet. Sum de tre siste månedene 2005: 114 119 137 370 Sum samme tre måneder for året før: 123 139 133 395 Den beregnede faktoren 370395 0,9367 Beregn prognosene: januar 2005 salg 128 0,9367 119,8036 eller ca 120 februar 2005 salg 117 0,9367 109,5939 eller ca. 110 mars 2005 salg 115 0,9367 107,7205 eller ca 108 A.4.2 Simulert prognoseberegning Summen av de tre månedene 2005 før utholdelsesperioden (juli, august, september): 129 140 131 400 Sum samme tre måneder for forrige år: 141 128 118 387 Beregnet faktor 400387 1.033591731 Beregn simulert prognose: oktober 2004 salg 123 1.033591731 127.13178 november 2004 salg 139 1.033591731 143.66925 desember 2004 salg 133 1.033591731 137.4677 A.4.3 Prosent av nøyaktighetsberegning POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Middel Absolutt Avviksberegning MAD (127.13178 - 114 143.66925 - 119 137.4677-137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Året i år Dette metoden kopierer salgsdata fra foregående år til neste år. Nødvendig salgshistorie: Ett år for beregning av prognosen pluss antall tidsperioder som er angitt for å vurdere prognoseytelsen (behandlingsalternativ 19). A.6.1 Varselberegning Antall perioder som skal inkluderes i gjennomsnittet (behandlingsalternativ 4a) 3 i dette eksemplet For hver måned av prognosen, gjennomsnitt de tre foregående månedene. Januar prognose: 114 119 137 370, 370 3 123 333 eller 123 februar prognose: 119 137 123 379, 379 3 126 333 eller 126 Mars prognose: 137 123 126 379, 386 3 128 677 eller 129 A.6.2 Simulert prognoseberegning Oktober 2005 salg 140 131) 3 133 33333 November 2005 salg (140 131 114) 3 128 33333 Desember 2005 salg (131 114 119) 3 121 33333 A.6.3 Prosent av nøyaktighetsberegning POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Middel Absolutt Avviksberegning MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Lineær tilnærming Lineær tilnærming beregner en trend basert på to salgshistorikk datapunkter. Disse to punktene definerer en rett trendlinje som projiseres inn i fremtiden. Bruk denne metoden med forsiktighet, da langdistanseprognosene utløses av små endringer på bare to datapunkter. Nødvendig salgshistorie: Antall perioder som skal inkluderes i regresjon (behandlingsalternativ 5a), pluss 1 pluss antall tidsperioder for vurdering av prognoseytelse (behandlingsalternativ 19). A.8.1 Varselberegning Antall perioder som skal inkluderes i regresjon (behandlingsalternativ 6a) 3 i dette eksemplet For hver måned av prognosen legger du til økningen eller reduksjonen i de angitte periodene før utholdelsesperioden forrige periode. Gjennomsnitt for de foregående tre månedene (114 119 137) 3 123.3333 Sammendrag av de foregående tre månedene med vekt (114 1) (119 2) (137 3) 763 Forskjellen mellom verdiene 763 - 123.3333 (1 2 3) 23 Forhold 12 22 32) - 2 3 14 - 12 2 Verdi1 DifferenceRatio 232 11,5 Verdi2 Gjennomsnitt - verdi1-forhold 123.3333 - 11.5 2 100.3333 Prognose (1 n) verdi1 verdi2 4 11.5 100.3333 146.333 eller 146 Varsel 5 11.5 100.3333 157.8333 eller 158 Varsel 6 11.5 100.3333 169.3333 eller 169 A.8.2 Simulert prognoseberegning oktober 2004 Salg: Gjennomsnitt for de foregående tre månedene (129 140 131) 3 133 33333 Sammendrag av de foregående tre månedene med vekt (129 1) (140 2) (131 3) 802 Forskjellen mellom verdier 802 - 133.3333 (1 2 3) 2 Forhold (12 22 32) - 2 3 14 - 12 2 Verdi1 DifferenceRatio 22 1 Verdi2 Gjennomsnittlig verdi1-verdi 133.3333 - 1 2 131.3333 Prognose (1 n) verdi1 verdi2 4 1 131.3333 135.3333 November 2004 salg Gjennomsnitt for de foregående tre månedene (140 131 114) 3 128 3333 Sammendrag av de foregående tre månedene med vekt (140 1) (131 2) (114 3) 744 Forskjellen mellom verdiene 744 - 128 3333 (1 2 3) -25,9999 Verdi1 DifferenceRatio -25.99992 -12.9999 Verdi2 Gjennomsnittlig verdi1-forhold 128.3333 - (-12.9999) 2 154.3333 Varsel 4 -12.9999 154.3333 102.3333 Desember 2004 salg Gjennomsnitt for de foregående tre månedene (131 114 119) 3 121.3333 Sammendrag av de foregående tre månedene med vekt (vekt) 131 1) (114 2) (119 3) 716 Forskjellen mellom verdiene 716 - 121.3333 (1 2 3) -11.9999 Verdi1 DifferenceRatio -11.99992 -5.9999 Verdi2 Gjennomsnittlig verdi1-verdi 121.3333 - (-5.9999) 2 133.3333 Værvarsel 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Prosent av nøyaktighetsberegning POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Gjennomsnittlig Absolutt Avviksberegning MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Metode 7 - secon d Gradert tilnærming Linjær regresjon bestemmer verdier for a og b i prognoseformelen Y a bX med sikte på å tilpasse en rett linje til salgshistorikkdataene. Second Degree Approximation er lik. Denne metoden bestemmer imidlertid verdiene for a, b og c i prognoseformelen Y a bX cX2 med sikte på å tilpasse en kurve til salgshistorikkdataene. Denne metoden kan være nyttig når et produkt er i overgangen mellom stadier av en livssyklus. For eksempel, når et nytt produkt flytter fra introduksjon til vekststadier, kan salgstrenden akselerere. På grunn av den andre ordreperioden kan prognosen raskt nærme seg uendelig eller slippe til null (avhengig av om koeffisient c er positiv eller negativ). Derfor er denne metoden bare nyttig på kort sikt. Prognose spesifikasjoner: Formlene finner a, b og c for å passe en kurve til nøyaktig tre punkter. Du spesifiserer n i behandlingsalternativet 7a, hvor mange tidsperioder dataene skal samles inn i hver av de tre punktene. I dette eksemplet n 3. Derfor blir faktiske salgsdata for april til juni kombinert med første punkt, Q1. Juli til september legges sammen for å skape Q2, og oktober til desember sum til Q3. Kurven vil bli montert på de tre verdiene Q1, Q2 og Q3. Nødvendig salgshistorie: 3 n perioder for beregning av prognosen pluss antall tidsperioder som kreves for å vurdere prognoseytelsen (PBF). Antall perioder som skal inkluderes (behandlingsalternativ 7a) 3 i dette eksemplet Bruk de forrige (3 n) månedene i tre måneders blokker: Q1 (apr - juni) 125 122 137 384 Q2 (jul - september) 129 140 131 400 Q3 Okt - des) 114 119 137 370 Det neste trinnet omfatter å beregne de tre koeffisientene a, b og c som skal brukes i prognoseformelen Y a bX cX2 (1) Q1 en bX cX2 (hvor X1) abc (2) Q2 en bX cX2 (hvor X 2) en 2b 4c (3) Q3 en bX cX2 (hvor X 3) en 3b 9c Løs de tre ligningene samtidig for å finne b, a og c: Trekk likning (1) fra ligning (2) og løs for b (2) - (1) Q2 - Q1 b 3c Erstatt denne ligningen for b til ligning (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Til slutt erstatte disse ligningene for a og b til ligning (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1c (Q3 - Q2) (Q1 - Q2) 2 Den andre gradstilnærmelsesmetoden beregner a, b og c som følger: en Q3 - 3 (Q2 - Q1) 370-3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370-400) (384-400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3-23) 85 Y a bX cX2 322 85X (-23) X2 Januar til marsvarsel (X4): (322 340 - 368) 3 2943 98 per periode april til juni prognose (X5): (322 425 - 575) 3 57 333 eller 57 per periode Juli til september prognose (X6): (322 510 - 828) 3 1,33 eller 1 per periode oktober til desember (X7) 595 - 11273 -70 A.9.2 Simulert prognoseberegning oktober, november og desember 2004 salg: Q1 (jan - mar) 360 Q2 (apr - juni) 384 Q3 (jul - september) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Prosent av nøyaktighetsberegning POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Gjennomsnittlig Absolutt Avviksberegning MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Metode 8 - Fleksibel metode Den fleksible metoden (Prosent over en måned før) 1, prosent over fjoråret. Begge metodene multipliserer salgsdata fra en tidligere tidsperiode av en brukerdefinert faktor, og deretter prosjektet det resultatet inn i fremtiden. I prosentandelen over siste årsmetoden er projeksjonen basert på data fra samme tidsperiode året før. Den fleksible metoden legger til rette for å angi en annen tidsperiode enn samme periode i fjor som skal brukes som grunnlag for beregningene. Multiplikasjonsfaktor. For eksempel angi 1,15 i behandlingsalternativet 8b for å øke tidligere salgshistorikkdata med 15. Baseperiode. For eksempel vil n 3 føre til at den første prognosen baseres på salgsdata i oktober 2005. Minste salgshistorie: Brukeren spesifiserte antall perioder tilbake til basisperioden, pluss antall tidsperioder som kreves for å evaluere prognoseprestansen ( PBF). A.10.4 Gjennomsnittlig Absolutt Avviksberegning MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metode 9 - Vektet Flytende Gjennomsnitt Vektet Flytende Gjennomsnittlig (WMA) - metode ligner Metode 4, Flytende Gjennomsnitt (MA). Imidlertid kan med vektet flytende gjennomsnitt gi ulik vekt til de historiske dataene. Metoden beregner et veid gjennomsnitt av den siste salgshistorikken for å komme frem til en projeksjon på kort sikt. Nyere data blir vanligvis tildelt større vekt enn eldre data, så dette gjør WMA mer lydhør overfor endringer i salgsnivået. Imidlertid oppstår prognoseforstyrrelser og systematiske feil når produktsalgshistorikken viser sterk trend eller sesongmessige mønstre. Denne metoden fungerer bedre for korte prognoser for modne produkter enn for produkter i vekst - eller forløpsfasen av livssyklusen. n Antall perioder med salgshistorie som skal brukes i prognoseberegningen. For eksempel angi n 3 i behandlingsalternativet 9a for å bruke de siste tre periodene som grunnlag for projeksjonen inn i neste tidsperiode. En stor verdi for n (som 12) krever mer salgshistorikk. Det resulterer i en stabil prognose, men vil være sakte for å gjenkjenne skift i salgsnivået. På den annen side vil en liten verdi for n (som 3) reagere raskere på endringer i salgsnivået, men prognosen kan variere så mye at produksjonen ikke kan svare på variasjonene. Vekten tilordnet hver av de historiske datoperiodene. De tildelte vekter må total til 1,00. For eksempel, når n 3, tilordner vekter på 0,6, 0,3 og 0,1, med de nyeste dataene som mottar den største vekten. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Metode 10 - Linjær utjevning Denne metoden ligner metode 9, vektet flytende gjennomsnitt (WMA). I stedet for å tilføre vekter til de historiske dataene, vil en formel imidlertid brukes til å tilordne vekter som avtar lineært og summen til 1,00. Metoden beregner deretter et veid gjennomsnitt av den siste salgshistorikken for å komme frem til en projeksjon på kort sikt. Som det gjelder for alle lineære bevegelige gjennomsnittlige prognoseteknikker, oppstår prognoseforstyrrelser og systematiske feil når produktsalgshistorikken viser sterk trend eller sesongmessige mønstre. Denne metoden fungerer bedre for korte prognoser for modne produkter enn for produkter i vekst - eller forløpsfasen av livssyklusen. n Antall perioder med salgshistorie som skal brukes i prognoseberegningen. Dette er angitt i behandlingsalternativet 10a. For eksempel angi n 3 i behandlingsalternativet 10b for å bruke de siste tre periodene som grunnlag for projeksjonen i neste tidsperiode. Systemet vil automatisk tildele vektene til de historiske dataene som avtar lineært og summen til 1,00. For eksempel, når n 3, vil systemet tildele vekter på 0,5, 0,3333 og 0,1, med de nyeste dataene som mottar den største vekten. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). A.12.1 Varselberegning Antall perioder som skal inkluderes i utjevnings gjennomsnitt (prosesseringsalternativ 10a) 3 i dette eksemplet Forhold for en periode før 3 (n2 n) 2 3 (32 3) 2 36 0,5 Forhold for to perioder før 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Forhold for tre perioder før 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Januar prognose: 137 0,5 119 13 114 16 127,16 eller 127 februar prognose: 127 0,5 137 13 119 16 129 Mars prognose: 129 0,5 127 13 137 16 129 666 eller 130 A.12.2 Simulert prognoseberegning oktober 2004 salg 129 16 140 26 131 36 133 66666 november 2004 salg 140 16 131 26 114 36 124 desember 2004 salg 131 16 114 26 119 36 119.3333 A.12.3 Prosent av nøyaktighetsberegning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Gjennomsnittlig Absolutt Avviksberegning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metode 11 - Eksponensiell utjevning Denne metoden ligner metode 10, lineær utjevning. Ved lineær utjevning tilordner systemet vekten til de historiske dataene som avtar lineært. Ved eksponensiell utjevning tilordner systemet vekt som eksponentielt forfall. Eksponensiell utjevningsprognosering er: Prognose a (Tidligere faktisk salg) (1-a) Tidligere prognose Prognosen er et veid gjennomsnitt av det faktiske salget fra forrige periode og prognosen fra forrige periode. a er vekten på det faktiske salget for den foregående perioden. (1-a) er vekten på prognosen for foregående periode. Gyldige verdier for et område fra 0 til 1, og faller vanligvis mellom 0,1 og 0,4. Summen av vekter er 1,00. a (1 - a) 1 Du bør tilordne en verdi for utjevningskonstanten, a. Hvis du ikke tilordner verdier for utjevningskonstanten, beregner systemet en antatt verdi basert på antall perioder med salgshistorikk som er angitt i behandlingsalternativet 11a. en utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for det generelle nivået eller størrelsen på salget. Gyldige verdier for et område fra 0 til 1. n rekke salgshistorikkdata som skal inkluderes i beregningene. Vanligvis er et år med salgshistorikkdata tilstrekkelig til å anslå det generelle salgsnivået. For dette eksempelet ble en liten verdi for n (n 3) valgt for å redusere manuelle beregninger som kreves for å verifisere resultatene. Eksponensiell utjevning kan generere en prognose basert på så lite som et historisk datapunkt. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). A.13.1 Varselberegning Antall perioder som skal inkluderes i utjevnings gjennomsnitt (prosesseringsalternativ 11a) 3 og alfafaktor (behandlingsalternativ 11b) tom i dette eksemplet en faktor for eldste salgsdata 2 (11) eller 1 når alfa er spesifisert en faktor for 2. eldste salgsinformasjon 2 (12) eller alfa når alfa er spesifisert en faktor for 3. eldste salgsdata 2 (13), eller alfa når alfa er spesifisert en faktor for de siste salgsdataene 2 (1n) , eller alfa når alfa er spesifisert November Sm. Nr. a (oktober faktisk) (1 - a) oktober sm. Nr. 1 114 0 0 114 desember Sm. Nr. a (november faktisk) (1 - a) november sm. Nr. 23 119 13 114 117.3333 januar Værvarsel a (desember faktisk) (1 - a) desember sm. Nr. 24 137 24 117.3333 127.16665 eller 127 februar Værvarsel januar Værvarsel 127 Mars Forecast januar Værvarsel 127 A.13.2 Simulert prognoseberegning juli 2004 Sm. Nr. 22 129 129 august Sm. Nr. 23 140 13 129 136.3333 september sm. Nr. 24 131 24 136.3333 133.6666 Oktober, 2004 salg Sep Sm. Nr. 133.6666 august 2004 Sm. Nr. 22 140 140 september Sm. Nr. 23 131 13 140 134 oktober Sm. Nr. 24 114 24 134 124 november, 2004 salg sep sm. Nr. 124 september 2004 Sm. Nr. 22 131 131 Sm. Nr. 23 114 13 131 119.6666 November Sm. Nr. 24 119 24 119.6666 119.3333 Desember 2004 salg Sep Sm. Nr. 119.3333 A.13.3 Prosent av nøyaktighetsberegning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Gjennomsnittlig Absolutt Avviksberegning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metode 12 - Eksponensiell utjevning med trend og sesongmessighet Denne metoden ligner metode 11, eksponentiell utjevning ved at et glatt gjennomsnitt beregnes. Metode 12 inneholder imidlertid også en term i prognosekvasjonen for å beregne en glatt trend. Prognosen består av en glatt gjennomsnitt som er justert for en lineær trend. Når spesifisert i behandlingsalternativet, er prognosen også justert for sesongmessig. en utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for det generelle nivået eller størrelsen på salget. Gyldige verdier for alfaområdet fra 0 til 1. b utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for trendkomponenten i prognosen. Gyldige verdier for beta rekkevidde fra 0 til 1. Om en sesongbasert indeks er brukt på prognosen a og b er uavhengig av hverandre. De trenger ikke å legge til 1,0. Minst nødvendig salgshistorie: to år pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). Metode 12 bruker to eksponensielle utjevningsligninger og ett enkelt gjennomsnitt for å beregne et glatt gjennomsnitt, en jevn trend og en enkel gjennomsnittlig sesongfaktor. A.14.1 Varselberegning A) Et eksponentielt glatt gjennomsnitt MAD (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Evaluering av prognosene Du kan velge prognosemetoder for å generere så mange som tolv prognoser for hvert produkt. Hver prognosemetode vil trolig skape en litt annen projeksjon. Når det regnes med tusenvis av produkter, er det upraktisk å ta en subjektiv beslutning om hvilke av prognosene som skal brukes i dine planer for hver av produktene. Systemet evaluerer automatisk ytelsen for hvert av prognosemetoder du velger, og for hvert av produktene prognose. Du kan velge mellom to ytelseskriterier, gjennomsnittlig avvik (MAD) og prosentandel av nøyaktighet (POA). MAD er et mål på prognosefeil. POA er et mål på prognoseforspenning. Begge disse ytelsesevalueringsteknikkene krever faktiske salgshistorikkdata for en brukerdefinert tidsperiode. Denne perioden med nyere historie kalles en holdout periode eller perioder som passer best (PBF). For å måle resultatene av en prognosemetode, bruk prognosemålingene for å simulere en prognose for den historiske holdoutperioden. Det vil vanligvis være forskjeller mellom faktiske salgsdata og den simulerte prognosen for holdoutperioden. Når flere prognosemetoder er valgt, oppstår denne samme prosessen for hver metode. Flere prognoser beregnes for holdoutperioden, og sammenlignet med den kjente salgshistorikken for samme tidsperiode. Prognosemetoden som gir den beste kampen (best egnet) mellom prognosen og det faktiske salget i holdoutperioden, anbefales for bruk i dine planer. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way.

No comments:

Post a Comment